If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2=8
We move all terms to the left:
w^2-(8)=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $
| 2(3x+3)=6x4 | | -17w+34w–-32w+-38w+-37=18 | | 4.9x^2-345x+4000=0 | | -12w–-10w–-6w=-12 | | 5c2-16c+3=0 | | 12x+18.00=+5x+21.75 | | 1.666666x=32-x | | 3=(a+6) | | 12-4x=-9x+17 | | 2n=-9+3n | | 4x+12(20-x)=120 | | 9+s=-5s-9 | | 9q-4=10q+5 | | 1/3n+11=-7 | | 3(x^2+3x+9/4)-100-9/4=0 | | 8x-21-6x=-7 | | 2x+x=342 | | 9d–10=10d | | 45/9+3m=23 | | -10+5s=10s | | x-0.5=3.2 | | 11/3x=2/6 | | 0=x(14-2x)(14-2x) | | -v+6=v | | 3y-11+7y=49 | | x+2x+4x+7x=28 | | 24/5x=6/5 | | (-4)/(1+2x)^2=0 | | V=x(14-2x)(14-2x) | | 5x-18=-31 | | .5(t+3)=16.25 | | -7u=9+2u |